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Abstract

Inhalation of organic dusts in agricultural environments causes airway inflammatory diseases. 

Despite advances in understanding the airway response to dust-induced inflammation, less is 

known about the transition from lung injury to repair and recovery. The objective of this study was 

to define the post-inflammation homeostasis events following organic dust-induced lung injury. 

Using an established protocol, mice were intranasally treated with swine confinement facility 

organic dust extract (ODE) daily for 3 weeks (repetitive exposure) or treated daily with ODE for 3 

weeks followed by no treatment for 1–4 weeks (recovery period) whereupon lavage fluid, lung 

tissue, and sera were processed. During recovery period, a significant decrease was observed in 

ODE-induced neutrophil levels after 1 week, lymphocytes at 2 weeks, and macrophages at 4 

weeks in the lavage fluid. ODE-induced lung cellular aggregates and bronchiolar compartment 

inflammation were diminished, but persisted for 4 weeks post-injury. Alveolar inflammation 

resolved at 3 weeks. ODE-induced lung neutrophils were cleared by 3 weeks, B-cells by 2 weeks, 

and CD3+CD4+ and CD3+CD8+ T cells by 4 week recovery period. Collectively, these results 

identify important processes during recovery period following agricultural dust-induced 

inflammation, and present possible strategies for improving lung repair and resolution.
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1. Introduction

Inhalation of agricultural organic dusts cause injury and inflammation in the lungs of 

exposed workers [1,2]. These organic dust exposures contribute significantly to the 

development of chronic pulmonary conditions, such as bronchitis and chronic obstructive 

pulmonary disease (COPD) [3–5]. Exposure to organic dusts results in airway neutrophil 

and lymphocyte influx, release of inflammatory mediators, and lung parenchymal injury 

[1,5,6]. The composition of agricultural dust is complex, but is known to contain gram 

positive and gram negative microbial cell wall components, proteases, and particulate matter 

[3,7,8]. This complex organic dust activates several lung innate immune pathways that 

otherwise may not be activated in single agent (e.g. endotoxin, bleomycin) exposure injury 

models [6,9]. Progress has been made in understanding the mechanisms underlying the 

inhalant response to acute and repetitive agricultural organic dust/dust extract exposures. 

Specifically, scavenger receptor A/CD204, Toll-like receptor 2 (TLR2), TLR4, TLR9, and 

the common adaptor protein, myeloid differentiation factor 88 (MyD88)-dependent 

pathways have been shown to be important in mediating acute and repetitive swine 

confinement facility organic dust extract exposure-induced airway inflammatory outcomes 

in rodent models [10–13]. Furthermore, TLR2 and TLR4 gene polymorphisms have been 

implicated in modulating lung disease in swine workers [14,15].

The magnitude of the innate immune response and subsequent inflammation is substantial, 

and if left unresolved can lead to progressive lung function loss over time. In agriculture 

workers who develop Farmer’s lung disease (hypersensitivity pneumonitis) or COPD [16–

18], current management has been focused on improving symptoms and quality of life 

because there are a lack of treatments to fully restore lung function [19]. While there are 

several animal models utilized to study environmental exposure-induced lung injury and 

chronic lung inflammation [9,20], few studies have examined the recovery phase by which 

lung inflammation and injury resolves following organic dust extract exposures [12]. In this 

later study [12], up to one week post-exposure was investigated as well as demonstrating an 

important role for scavenger receptor A signaling. Investigation of further time points has 

not been examined to the best of our knowledge, but this information could provide insight 

into potential strategies to augment recovery events following inhalation of inflammatory 

environmental or occupational aerosols, particularly agricultural organic dust exposures. It is 

generally recognized that clearance of inciting insult(s) and removal of inflammatory cells is 

required for establishment of tissue homeostasis [21]. It is likely that a concerted immune 

response is necessary to resolve agricultural organic dust in the lungs and mediate repair and 

resolution of tissue damage following such an insult. The objective of this study was to 

define the post-inflammatory lung resolution events in a time-dependent manner following 

repetitive swine confinement facility organic dust extract (ODE) exposure.
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Using a well-established animal model [6], C57BL/6 mice were repetitively exposed to ODE 

daily over a 3-week period, and upon cessation of ODE exposure, subsets of mice were 

euthanized at 1, 2, 3, and 4 weeks after exposure with experimental endpoints quantified. 

Studies revealed that neutrophil, macrophage, and lymphocyte infiltration persisted up to 3–

4 weeks after repetitive ODE exposure ceased. In addition, we further characterized the 

resolution of lung cellular aggregates in ODE exposed mice by showing that apoptotic 

events increased during resolution. Amphiregulin, a repair mediator, increased during the 

resolution phase, and systemic immunoglobulin (Ig) responses remained elevated up to 4 

weeks post-injury.

2. Methods

2.1. Organic dust extract

Aqueous ODE was prepared as previously described [6]. Settled dust was collected from 

horizontal surfaces (~1 meter above floor level) of swine confinement feeding operations 

located in Colfax County, Nebraska (population density approximates 25 people per square 

mile) that housed approximately 400–600 animals with permission granted from owners. 

Dust (1 g) was incubated in sterile Hank’s Balanced Salt Solution (10 mL; Sigma, St. Louis, 

MO) at room temperature for 1 hour and centrifuged for 60 min at 2000 × g. The final 

supernate was filter sterilized (0.22 μm), a process that also removes both coarse and fine 

particles. Endotoxin concentrations in 100% ODE ranged from 1240–1400 EU/mL as 

determined using the limulus amebocyte lysate assay (Sigma). Muramic acid levels were 

previously determined by mass spectrometry to be approximately 70 ng/mg [22]; muramic 

acid is a molecular component of bacterial cell wall peptidoglycans. Stock ODE was batched 

prepared, stored at −20°C, and aliquots were diluted for each experiment to a final 

concentration (vol/vol) of 12.5% for animal studies in sterile phosphate buffered saline 

(PBS; pH 7.4; diluent). ODE 12.5% has been previously shown to elicit optimal 

experimental outcomes in mice and is well-tolerated [6].

2.3. Animals

All the animal procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Nebraska Medical Center and were in accordance with the 

NIH guidelines for the use of rodents. C57BL/6 mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). Male mice, between 7–10 weeks, were used for all studies. 

All mice had ad libitum access to standard rodent chow and filtered water through the course 

of the studies.

2.4. Animal exposure model

An established intranasal inhalation repetitive exposure animal model was utilized whereby 

mice were lightly sedated under isoflurane and received treatment with either 50 μL of 

sterile saline (PBS) or 12.5% ODE daily for 3 weeks [6,12,22,23], which is denoted as 

“repetitive ODE treatments.” For recovery period time point experiments, mice were treated 

daily for 3 weeks and allowed to recover for 1, 2, 3, or 4 weeks without treatments, which is 

denoted as “post-injury recovery period.” At specified time points, animals were euthanized 

for experimental endpoint quantification. The protein concentration of each ODE treatment 
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was 149 ug ± SD of 6 μg as measured by spectrophotometry (NanoDrop Technologies, 

Wilmington, DE). No mice exhibited respiratory distress, signs of stress, or weight loss 

throughout the treatment period.

2.5. Bronchoalveolar lavage fluid cell analysis

Bronchoalveolar lavage fluid (BALF) was accumulated using 3 × 1 mL PBS. Total cell 

numbers from the three pooled lavages were enumerated and differential cell counts were 

determined from cytospin-prepared slides (cytopro cytocentrifuge, ELITech Group, Logan, 

UT) stained with DiffQuick (Siemens, Newark, DE). From cell-free supernate of the first 

lavage fraction, amphiregulin was quantitated by ELISA (R&D Systems, Minneapolis, MN).

2.6. Histopathology

Following lung lavage, whole lungs were excised and slowly inflated (20 cm H2O pressure) 

with 10% formalin (Sigma) for 24 hours to preserve pulmonary architecture as previously 

described [6]. Fixed lungs were processed, embedded in paraffin, and entire lung sections 

were cut (4–5 μm) and stained with hematoxylin and eosin (H&E). Each slide was entirely 

reviewed at scanning magnifications (2X, 4X, and 10X objectives; Nikon Eclipse Model 

E600 microscope, Nikon, Tokyo, Japan) and semi-quantitatively assessed for the degree and 

distribution of lung inflammation by a pathologist (W.W.W.), blinded to the treatment 

conditions, utilizing a previously published scoring system [6]. This scoring system 

evaluates the spectrum of inflammatory changes for: 1) alveolar compartment inflammation, 

2) bronchiolar compartment inflammation, and 3) intrapulmonary cellular aggregates. Each 

parameter was independently assigned a value from 0 to 3, and the greater the score, the 

greater the inflammatory changes in the lung.

2.7. Flow cytometry phenotyping of whole lung cells

Cells were isolated from whole lungs as previously described [12,22,23]. Briefly, following 

euthanasia and lung lavage, the right ventricle was infused with 10 mL sterile PBS to 

remove blood from the pulmonary vasculature. Next, lungs were harvested and subjected to 

an automated dissociation procedure using a gentleMACS dissociator instrument according 

to manufacturer instructions (Miltenyi Biotech, Auburn, CA) in a solution containing 

collagenase type I (324 U/mL; Fisher, Pittsburgh, PA), bovine DNase (75 U/mL), porcine 

heparin (25 U/mL) and PBS with Ca2+ and Mg2+ (pH 7.4). The resulting suspension was 

passed through a nylon mesh (40 μM; Thermo Fisher Scientific, Waltham, MA) to remove 

any large fragments. The red blood cells were subsequently lysed using a 0.84% (w/v) 

ammonium chloride treatment (5 min at 4°C), and after centrifugation at 425 × g, the 

remaining cells were re-suspended in PBS and final cell counts obtained using a 

hemocytometer. Viability of the final cell preparations was assessed by trypan blue 

exclusion. A LIVE/DEAD Fixable Violet Dead Cell Stain kit (Life Technologies, Carlsbad 

CA) was also used to assess cell viabilities. More than 99% of gated macrophages and 

lymphocytes were viable, with no differences noted among the saline, repetitive ODE, and 

post-ODE recovery-treatment groups (data not shown). Whole lung cells from each animal 

were incubated with anti-CD16/32 (Fc Block, BD Biosciences, San Jose, CA) to minimize 

non-specific antibody staining, and then stained with monoclonal antibodies (mAb) directed 

against Ly-6G, CD11c, CD11b, CD3, CD4, CD8, CD45R/B220. Parallel cell preparations 
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were treated with appropriate isotype controls (BD Biosciences). Cytometer compensation 

was performed with antibody capture beads (BD Biosciences) stained separately with 

individual mAbs used in test samples.

The gating strategy for Ly6G+neutrophils, CD11chiCD11blo alveolar macrophages, 

CD11chiCD11bhi exudative macrophages, CD3+CD4+ and CD3+CD8+ T lymphocytes, and 

CD3−CD45R/B220+ B lymphocytes are as previously published [12,22,23]. All populations 

were gated by characteristic forward and side-scatter properties and antibody-specific 

staining fluorescence intensity using a FACSAria cell sorter system and associated software 

(BD Biosciences). Briefly, initial gating on CD45+ lung leukocytes excluded debris, and the 

percentage of respective populations (i.e., macrophage, lymphocyte, neutrophil) was 

determined from CD45+ leukocytes. This cytometric percentage (determined by flow 

cytometry) is multiplied by the original hemocytometer count of total cells recovered for 

each animal. In each case, a minimum of 50,000 CD45+ events/mouse sample was acquired 

for analysis.

2.8. Apoptosis Immunohistochemistry Assay

Apoptotic lung cells were determined by TUNEL staining of tissue sections using the 

ApopTag Peroxidase In Situ Apoptosis Detection Kit (Millipore, Billerica, MA) according 

to manufacturer’s instructions. Slides were scanned (Ventana Roche Coreo Scanner AU, 

Tucson, AZ) and photographs were taken of lung cellular aggregates by Ventana Roche 

Image viewer computer software. Image-Pro Analyzer software determined the percent of 

apoptotic cells in the 40× cellular aggregates. A minimum of 32 images from 4 mice per 

treatment group were analyzed.

2.9. Serum

Whole blood was collected from mice at the time of euthanasia from the axillary artery. 

Blood (400 μL) was placed in BD Microtainer Tubes (Becton, Dickinson and Company, 

Franklin Lakes, NJ) and centrifuged for 2 minutes at 6000 × g and supernatant sample 

collected. Serum IgG and IgE were quantified according to manufacturer’s instruction using 

a Quantikine enzyme-linked immunosorbent assay kit (Affymetrix eBioscience, Santa Clara, 

CA) with sensitivities of 1.56 ng/mL and 4 ng/mL, respectively.

2.10. Statistical methods

Data are presented as the mean ± standard error of mean (SEM). To detect significant 

changes between groups, a one-way analysis of variance (ANOVA) was utilized and a post 

hoc test (Tukey/LSD) or nonparametric Mann-Whitney test was performed to account for 

multiple comparisons if the p value was < 0.05. All statistical analysis were performed using 

SPSS software (SPSS, Chicago, IL, USA) and statistical significance accepted at p < 0.05.
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3. Results

3.1. Airway cellular influx in BALF after repetitive ODE treatments and following the 1–4 
week post-injury recovery periods

It has been established that repetitive ODE treatment induces the influx of neutrophils, 

macrophages, and lymphocytes, and that airway macrophages and lymphocytes remain 

increased at one week following final ODE treatment [12]. In the present study, we 

investigated the temporal course for the resolution of repetitive ODE-induced inflammatory 

cell influx (Figure 1). BALF neutrophils were cleared by 1 week post-exposure (p<0.001). 

However, macrophage counts remained elevated for 3 weeks following final ODE treatment. 

ODE-induced lymphocyte counts remained increased at 1 week post-injury, and remained 

detectable, but notably decreased, up to 3 weeks after final ODE treatment. Eosinophils were 

not detected in any of the treatment conditions.

3.2. Recovery from repetitive ODE exposure is marked by persistence of cellular 
aggregates for up to 4 weeks in the lung tissue

Repetitive ODE treatment induces lung inflammation marked by the recruitment of 

inflammatory cells into the bronchiolar and alveolar compartments as well as development 

of cellular aggregates [6]. Here, we sought to define the normative time course of restoration 

to pre-ODE-induced lung pathology. Repetitive ODE treatment induced the characteristic 

increase in inflammatory cells and development of cellular aggregates (Figure 2A), and 

moreover, by microscopic review, these pathologic findings remained detectable up to 4 

weeks following final ODE treatment. The range of ODE-induced histopathologic change 

was semi-quantitatively assessed in a blinded manner by a pathologist (Figure 2B). As 

compared to saline, the degree and distribution of lung alveolar inflammation remained 

significantly increased until 2 weeks post-injury and bronchiolar inflammation remained 

significantly increased until 4 weeks. As compared to repetitive ODE treatment, there was 

significant evidence of a decrease in both alveolar and bronchiolar inflammation at 1 week 

post-injury recovery period. ODE-induced cellular aggregates demonstrated prolonged 

persistence. At 4 weeks post-injury, the size and distribution of ODE-induced cellular 

aggregates remained significantly increased as compared to saline treatment.

3.3. Clearance of repetitive ODE exposure-induced lung neutrophils, alveolar 
macrophages, and exudative macrophages is time-dependent

To further delineate the post-injury inflammatory cellular effect observed in the lung tissue, 

cells were dissociated from whole lung and analyzed as described in the Methods section 

following repetitive ODE treatment and post-injury recovery time periods. Repetitive ODE 

treatment resulted in increased total whole lung cell influx that persisted following the 1-

week post-injury as compared to saline treatment (Figure 3A). Lung neutrophils were 

significantly decreased by 1 week post-injury, but remained elevated as compared to saline 

control until 4 weeks post-injury recovery time period (Figure 3B). Alveolar CD11c
+CD11blo macrophages and exudative CD11c+CD11bhi macrophages induced by repetitive 

ODE exposure remained increased at 1 week post-injury as compared to saline, but were 

significantly decreased as compared to repetitive exposure (Figure 3C–D).
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3.4. Lymphocytes, particularly CD4+ and CD8+ T cells, demonstrated prolonged 
persistence in the lung following final ODE exposure

To further understand the persistent lymphoid aggregate response, the infiltrating lung 

lymphocyte phenotypes were investigated by flow cytometry. Consistent with prior reports 

[23], repetitive ODE treatments resulted in increased levels of CD3+CD4+ and CD3+CD8+ T 

cells as well as increased B cells (B220+) (Figure 4). In the post-recovery time conditions, 

we found a gradual decrease in the number of CD3+CD4+ cells out to 4 weeks following 

final ODE treatment. The number of CD3+CD8+ T cells remained increased out to 3 weeks. 

In comparison, clearance of B cells predominately occurred by 2 weeks post-repetitive 

ODE-induced lung injury.

3.5. Apoptotic cells within cellular aggregates diminished over time following final 
repetitive ODE exposure

The pattern of lung cell apoptosis events in post-injury tissue homeostasis was investigated 

by TUNEL assay. By microscopic review, lung apoptotic cells were greatest within the 

cellular aggregates with repetitive ODE exposure, and there was evidence of diminishing 

apoptotic events within the cellular aggregates in recovery time periods (Figure 5A). To 

quantitate these observed differences in post-injury recovery time periods, the area of 

cellular aggregates from 8 images per mouse (N=4 mice) per treatment group were assessed 

for percent positive staining cells per area. As shown in Figure 5B, there was active 

apoptosis with repetitive exposure (~14%) within the cellular aggregates, and these events 

were reduced to approximately 5% of the cellular aggregates at 4 weeks recovery.

3.6. Levels of serum immunoglobulins persisted and BALF amphiregulin levels increased 
over time following repetitive ODE exposure

To determine whether a systemic adaptive immune response resulting from repetitive ODE 

exposure was present and/or persisted following cessation of ODE exposure, serum levels of 

murine IgG and IgE were investigated. For the first time, we demonstrated that repetitive 

ODE exposure increases both serum IgG and IgE levels, and IgG levels remain elevated for 

4 following cessation of ODE treatment (Figure 6A–B). Whereas serum IgE levels also 

remain increased as compared to saline for up to 4 week recovery time, there was a 

significant decrease in IgE levels following one week post-injury as compared to repetitive 

exposure condition (Figure 6B).

Amphiregulin, produced by a number of cells including type 2 innate lymphoid cells, T 

regulatory cells, macrophage and lung epithelial cells, has been implicated in lung repair 

[25–27]. Following repetitive ODE exposure we detected a small, but significant increase in 

amphiregulin in the BALF (Figure 6C). Interestingly, amphiregulin levels continued to rise 

over the post-injury recovery time points, with maximal levels detected at 4 weeks post 

cessation of ODE treatment (Figure 6C).

4. Discussion

In this study, we defined the post-injury lung homeostasis response following repetitive 

ODE exposure over a four-week recovery period. Our study characterized ODE-mediated 
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neutrophil, macrophage and lymphocytic recruitment and regression in the airways and the 

lung parenchyma. Furthermore, we demonstrated prolonged persistence of neutrophils and 

lymphocytes and the corresponding resolution of cellular aggregates following repetitive 

exposure to ODE. Apoptotic events appear important in the early post-recovery phases of the 

normative resolution response. Studies demonstrated that a systemic adaptive immune 

response was induced by repetitive ODE exposure, which was evident by increased serum 

IgG and IgE levels that persisted for up to 4 weeks post cessation of ODE. The pro-repair/

resolving mediator, amphiregulin, was also induced in BALF following repetitive ODE 

exposures, but was found at greatest levels at 3 and 4 weeks post-injury. These studies 

provide time-dependent insight into the normative repair and resolution response following 

ODE exposure in an animal model.

Neutrophils have been characterized in many studies for their ability to mount immunity to 

various pathogens and subsequently aid in the establishment of tissue homeostasis following 

injury [28,29]. In the present study, neutrophil counts return to baseline in the airways within 

the first week following ODE exposure; however, neutrophils remained present in the lung 

parenchyma for up to 3 weeks following cessation of exposure. Neutrophils are short-lived, 

and normally undergo apoptosis once they have fulfilled their role in responding to 

inflammatory insult [21,30]. Persistence of neutrophils is commonly thought to lead to 

chronic inflammation and host tissue damage in lung diseases such as neutrophil-variant 

asthma and COPD [31]. Alternatively, there is also evidence that neutrophils can change 

from a pro-inflammatory to an anti-inflammatory phenotype in response to the lung 

microenvironment and act to enhance the resolution of inflammation [28,32]. Thus, it is 

possible that the prolonged presence of neutrophils in the lung tissue, but not the airways, 

following cessation of ODE exposure might fit into this new paradigm. Future studies could 

focus on understanding the phenotypic specificity of the post-inflammatory lung neutrophil 

function as well as location and distribution within the lung after repetitive ODE exposure. 

However, others have recently shown that an amplification of neutrophil apoptosis facilitated 

wound healing in an endotoxin-induced experimental model of acute respiratory distress 

syndrome [30], which would suggest that enhancing neutrophil apoptosis is beneficial.

Macrophages are well-described regulatory immune cells [33,34]. Initially, the macrophage 

serves to trap pathogens and establish an appropriate degree of inflammation. In the 

recovery period, lung macrophages are indispensable to lung recovery [22,35]. In the present 

study, macrophages composed the greatest portion of the BALF for out to 4 weeks of 

recovery. In contrast, the activated or exudative CD11c+CD11b+ lung macrophage and 

CD11c+CD11blo alveolar macrophage populations in the whole lung were only increased at 

the first week following cessation of ODE treatment. Exudative or activated CD11c+ lung 

macrophages are a common feature of inflammatory responses [36], and in organic dust 

extract focused studies, the CD11c+CD11b+ lung macrophage with M1 features has been 

demonstrated [22,37]. Here, levels of these macrophages diminished by 2 weeks post-injury 

(Figure 3). Predominately through their phagocytic capabilities, macrophages are important 

in resolution of inflammatory responses to efficiently clear apoptotic cells, a process called 

efferocytosis [21,38]. Our data demonstrate that apoptotic events were increased early in the 

recovery period, which, to some degree, follows the pattern of macrophage localization in 

the lung parenchyma. We have previously reported that depletion of lung macrophages 
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results in accumulation of neutrophils following repetitive ODE exposure [22]. Thus, our 

finding of relative rapid resolution of macrophages in the lung tissue might also suggest a 

dysregulated repair response. This suggests that strategies aimed at enhancing macrophage 

function and/or numbers to improve ODE-induced lung injury might be necessary. 

Moreover, further delineation of the macrophage phenotype and function might be 

warranted, particularly because it was demonstrated by others that classically activated M1 

macrophages produce high concentrations of amphiregulin to control lipopolysaccharide-

induced acute lung injury [39].

Lymphocytes, cellular aggregates and apoptotic events within cellular aggregates were also 

characterized. Lavage lymphocyte levels decreased at a rate coincidental to lymphoid 

aggregate resolution. In prior work, the cellular aggregates were found to be composed of B 

cells, CD3+ T cells, and Mac3+ macrophages [6]. It is not known at this time whether the 

ODE-induced lung cellular aggregates develop high endothelial venules, a feature of 

inducible bronchus-associated lymphoid tissue [40,41]. However, we previously 

demonstrated in independent phenotyping investigations that the CD3+ T cells were present 

in the lungs with a strong CD4+ T cell population skewed toward a Th1/Th17-characterized 

microenvironment [23]. However, in these current studies, Th1/Th2/Th17/Treg cytokines 

were not detected in the lung homogenates or BALF in the post-injury time points (data not 

shown). It remains possible that we were not able to detect local production of Th1/Th17 

cytokines, which could be further explored in the future by isolating various candidate lung 

cells and subsequently applying ex vivo culture stimulation conditions. Alternatively, it is 

possible that the regulatory FoxP3+ T-cell subset, known to produce IL-10, plays a local role 

in resolution and repair [42–44]. We speculate that the cellular aggregates are likely resolved 

as antigenic stimulation is removed from the lung.

Less is known about the B cell response following organic dust exposure, and in this study, 

we found that systemic IgG and IgE levels were increased following repetitive ODE 

exposure; moreover, levels remained elevated for up to 4 weeks following cessation of 

exposure. Class-specific IgG and IgE immunoglobulins have been associated with Farmer’s 

lung disease [45,46]. Given the complexity of the organic dust exposure, the specific 

antigen(s) eliciting this immunoglobulin response are currently not known. It is possible that 

a spectrum of antibodies may be important in complexing ODE components to effectively 

attract and aggregate innate and adaptive immune cells for optimal clearance and resolution 

of injury. To our knowledge, this is the first animal model to demonstrate an increased and 

prolonged immunoglobulin response to complex organic dust extract exposures, which could 

lead to novel strategies focused on B-cell biology.

Amphiregulin is an endogenous pro-repair mediator that has been increasingly implicated in 

the resolution and repair of asthmatic lung disease [24,25] and nonallergic chronic lung 

disease [47,48]. In this present study, amphiregulin was slightly increased with repetitive 

ODE exposures, but interestingly, levels of amphiregulin further increased in the post-injury 

recovery time periods following cessation of ODE treatment. The observation of increasing 

levels of amphiregulin would support studies focused on innate lymphoid cells, Tregs, 

epithelial cells, and/or macrophages as others have demonstrated these cells as potential 
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sources of amphiregulin [24,26,27]. Furthermore, amphiregulin could be potentially 

exploited in future studies aimed at enhancing repair and injury induced by organic dusts.

There are other limitations of this study. The ODE utilized is a sterile, aqueous extract, and 

this process could eliminate other potential inflammatory agents such as whole bacteria and 

fungal spores from being investigated. Next, we utilized an intranasal inhalation delivery 

method, which is also being utilized by others in this field [37]. However, other animal 

exposure models that have been utilized include hanging murine cages in swine confinement 

facilities [13], intratracheal instillation [49], and aerosolized delivery systems [50].

In conclusion, agricultural dust exposures cause significant morbidity and loss of work hours 

and productivity in individuals regularly exposed. Here, we determined the timing of the 

normative recovery phase following ODE and show in detail the timing and kinetics of 

airway immune cell influx and regress. This ODE exposure-recovery model can be used in 

future studies where determining the efficacy of resolution-promoting targets may be tested 

to determine potential translational therapies for agriculture workers exposed to organic 

dust.
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Figure 1. Airway cellular influx in bronchoalveolar lavage fluid after repetitive ODE treatments 
and subsequent 1–4 week post-injury recovery time periods
C57BL/6 mice were intranasally treated with saline or ODE daily for 3 weeks (repetitive 

ODE exposure) or treated with ODE daily for 3 weeks followed by no treatments for 1, 2, 3 

or 4 weeks (recovery time periods). Bar graphs show mean with standard error bars of BALF 

counts of total cells, neutrophils, macrophages, and lymphocytes (N=8–9 mice/treatment 

group from 2 independent experiments). Statistically significance (*p<0.05, **p<0.01, 

***p<0.001) versus saline. Significant differences between repetitive ODE and post-

recovery time points as indicated by line.
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Figure 2. Recovery from repetitive ODE exposure is marked by persistent cellular aggregates for 
up to 4 weeks in the lung tissue
C57BL/6 mice were intranasally treated with saline or ODE daily for 3 weeks (repetitive 

ODE exposure) or treated with ODE daily for 3 weeks followed by no treatments for 1, 2, 3 

or 4 weeks (post-injury recovery time periods). A, Representative 4–5-μm thick murine lung 

section (H&E) stained from each treatment group (10 X magnification) is shown. Line scale 

is 100 μm. B, Mean semi-quantitative distribution of inflammatory scores of lung cellular 

aggregates, bronchiolar inflammation, and alveolar inflammation in mice (N=5 mice/

treatment group). Error bars represent SEM. Statistical significance (*p<0.05, ***p<0.001) 

versus saline. Statistical significance also denoted by A: p<0.05 vs. repetitive ODE 

treatment; B: p<0.05 vs. 1 week recovery time point.

Warren et al. Page 14

Safety (Basel). Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Clearance of repetitive ODE exposure-induced lung neutrophils, alveolar macrophages, 
and exudative macrophages is time-dependent
Mice were intranasally treated with saline or ODE daily for 3 weeks (repetitive ODE 

exposure) or treated daily with ODE for 3 weeks followed by no treatment for 1, 2, 3, or 4 

weeks (post-injury recovery time periods) whereupon mice were euthanized, lavage fluid 

removed, and lung cells dissociated. A, Mean total lung cells as determined by 

hemocytometer. B, Total neutrophils (Ly6G+), C, Alveolar macrophages (CD11chiCD11blo), 

and D, Exudative macrophages (CD11chi CD11bhi). Number of lung neutrophils and 

macrophages were calculated by multiplying the percentage of cells in respective gate (% of 

CD45+ cells, as analyzed by FACs) multiplied by total lung cells for each mouse. Bar graphs 

depict means with standard error bars. N=4–5 mice/group. Statistically significance 

(*p<0.05, **p<0.01,***p<0.001) versus saline. Line denotes significant difference (p<0.05) 

between repetitive ODE and a post-recovery timepoint.
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Figure 4. Lymphocytes, particularly CD4+ and CD8+ T cells, demonstrated prolonged 
persistence in the lung following removal of ODE
Mice were intranasally treated with saline or ODE daily for 3 weeks (repetitive ODE 

exposure) or treated daily with ODE for 3 weeks followed by no treatment for 1, 2, 3, or 4 

weeks (post-injury time periods) whereupon mice were euthanized, lavage fluid removed, 

and lung cells dissociated. Lymphocytes were identified by CD45 positivity and 

characteristic FSC and SSC properties of lymphocytes followed by staining for CD3, CD4, 

CD8, and B220. Total numbers of each lymphocyte population were determined by 

multiplying the frequency of CD3+CD4+ cells, CD3+CD8+ cells, or CD3−B220+ cells 

(among the CD45+ leukocytes) by the total lung cell number for each mouse. Bar graph 

depicts mean with standard error bars of N=4–5 mice/treatment group. Statistical 

significance (*p<0.05, **p<0.01, ***p<0.001) versus saline. Line denotes significant 

difference (p<0.05) between repetitive ODE and a post-recovery time point.
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Figure 5. Apoptotic cells within cellular aggregates diminish over time following final repetitive 
ODE exposure
Mice were intranasally treated with ODE for 3 weeks or treated repetitively with ODE 

followed by no treatment for 1, 2, 3, or 4 weeks (post-injury recovery time period). Panel A, 
representative 4–5-μm thick section stained using Apoptag for apoptotic cells of a mouse 

from each treatment group (20 X magnification) with cellular aggregates outlined in black. 

Line scale is 100μm. Panel B, Bar graphs depicts mean percentage area of positive apoptotic 

events within cellular aggregates with SE bars. A minimum of 32 images from 4 mice per 

group were analyzed using Image-Pro Analyzer software. Line denotes significant difference 

(p<0.05) between repetitive ODE and a post-injury recovery time periods.
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Figure 6. Serum immunoglobulin and bronchoalveolar lavage fluid amphiregulin levels over time 
following repetitive ODE exposure
Mice were intranasally treated with ODE for 3 weeks or treated daily for 3 weeks with ODE 

followed by no treatment for 1–4 weeks (post-injury recovery time period). A, Serum IgG 

and (B) IgE levels were increased following repetitive ODE exposure and remained elevated 

as compared to saline control for up to 4 weeks cessation of ODE exposure. C, 

Amphiregulin levels in BALF increased over time following cessation of repetitive ODE 

exposure. Bar graphs depict mean with standard error bars of N=4–9 mice/treatment group. 

Statistically significance (*p<0.05, **p<0.01, ***p<0.001) versus saline. Line denotes 

significant difference (p<0.05) between repetitive ODE and a post-injury recovery time 

point.
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